

Available online at www.sciencedirect.com



Journal of Molecular Catalysis A: Chemical 236 (2005) 94-98



www.elsevier.com/locate/molcata

# The study of a synergetic effect over a H-ZSM-5/V<sub>2</sub>O<sub>5</sub> hybrid catalyst on SCR reaction

Seong Moon Jung<sup>\*,1</sup>, Olivier Demoulin, Paul Grange

Unité de catalyse et chimie des matériaux divisés, Université catholique de Louvain, Croix du Sud 2/17, B-1348 Louvain-la-Neuve, Belgium

Received 2 December 2003; received in revised form 21 March 2005; accepted 22 March 2005 Available online 23 May 2005

#### Abstract

The synergetic effect over a H-ZSM-5/V<sub>2</sub>O<sub>5</sub> hybrid catalyst on selective catalytic reduction (SCR) reaction has been studied by steady state reaction (SSR), temperature programmed reaction (TPR) and NH<sub>3</sub>-temperature programmed desorption (TPD). The improved NO conversion is observed on the layered hybrid catalyst with V<sub>2</sub>O<sub>5</sub> as the first layer. TPR experiment suggested that V<sub>2</sub>O<sub>5</sub> plays a role as a supplier of oxygen source through N<sub>2</sub>O formation, while H-ZSM-5 decomposes N<sub>2</sub>O into N<sub>2</sub> and  $\alpha$ -oxygen.  $\alpha$ -Oxygen may contribute to the increase in NO<sub>2</sub> species on H-ZSM-5 and improves the apparent SCR activity. NH<sub>3</sub>-TPD by NO experiments shows the possibility of the contribution of spillover oxygen in movement of SCR activity.

© 2005 Elsevier B.V. All rights reserved.

Keywords: V2O5; H-ZSM-5; Hybrid catalyst; Synergetic effect; SCR reaction

# 1. Introduction

The elimination of nitrogen oxides emitted from the combustion process is particularly important in the reduction of the environmental problems caused by the formation of acid rain and ozone through secondary reactions in the atmosphere [1]. Several processes have been proposed for the elimination of NO<sub>X</sub> through the widespread application of available methods and/or via the development of new technologies [2]. Among the flue gas treatment methods, selective catalytic reduction (SCR) is well developed and used worldwide due to its efficiency, selectivity and economy. The SCR process is based on the reaction between NO<sub>X</sub> and a reducing agent such as CO, H<sub>2</sub> and ammonia, injected into the flue gas stream, to produce innocuous water and nitrogen [1]. Especially, NO<sub>X</sub> elimination with ammonia as a reducing agent has been extensively studied as a non-catalytic technology (SNCR) and a catalytic technology (SCR) for stationary sources [1–6].

The SCR mechanisms can be classified into two categories: (i) Eley–Rideal, and (ii) Langmuir–Hinshelwood [7–16]. The former mechanism has been emphasized at low temperature over reducible materials including catalysts like  $V_2O_5$  based catalyst, which enables the adsorbed ammonia to activate, whereas the Langmuir–Hinshelwood mechanism has been used to explain the activity of highly acidic catalysts with negligible reducibility such as zeolites and sulfate types, at high temperature.

In the Eley–Rideal mechanism, the ammonia adsorbed on the catalyst surface should be activated to react with NO from the gas phase. Ramis et al. [7] have suggested that the amide or amide radical forms through the dissociation of ammonia adsorbed on Lewis acid sites, while Topsøe et al. [8] have concluded that the NH<sub>3</sub><sup>+</sup> formed by the dissociation of ammonia adsorbed on Brønsted acid sites is the main species. Although the adsorption site of ammonia for the formation of active species is still under debate, the agreement point between both authors is that one H atom of ammonia

<sup>\*</sup> Corresponding author at: Corporated Research & Development, LG Chem, Ltd./Research Park, 104-1, Moonji-dong, Yuseong-gu, Daejeon 305-380, Korea Tel.: +82 42 866 2892; fax: +82 42 863 7466.

E-mail address: jungsm@lgchem.com (S.M. Jung).

<sup>&</sup>lt;sup>1</sup> Tel.: +32 10 47 35 80; Fax: +32 10 47 36 49.

H Deceased.

<sup>1381-1169/\$ –</sup> see front matter @ 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.molcata.2005.03.028

should be dissociated by the reducible site located near the ammonia.

The mechanism involving the dissociation of ammonia was already known in SNCR [4]. The NH<sub>2</sub> radical formed by the reaction of OH radical with ammonia at 800 °C is known as the main species, which prefers the reaction with NO to N<sub>2</sub>. Besides, in the SNCR mechanism, further dissociation ammonia generates NH and this material prefers the reaction with O<sub>2</sub> to NO. The decrease in NO conversion is usually identified over all SCR catalysts. As far as the SNCR mechanism is concerned, it can be imagined that the excess hydrogen dissociation of ammonia to NH<sub>X</sub> species due to the highly reducible site would occur at high temperature and is the main step to accelerate the ammonia oxidation.

In a previous paper [17], we reported that the hybrid catalyst between TiO<sub>2</sub> sulfate and  $V_2O_5$  showed a high activity due to the synergetic effect, which is attributed to the increased amount of nitrate and NH<sub>2</sub> species. In this hybrid system, the effect of oxygen transfer was supposed to be the main synergy in the mechanism.

In addition, the hybrid system consisting of H-ZSM-5 and  $V_2O_5$  also showed the modified SCR activity. Based on the SCR mechanism of H-ZSM-5 [18–21], this promotional effect can be explained by the enhanced formation rate of NH<sub>2</sub> and NO<sub>2</sub> species. As a result, it is postulated that the oxygen from  $V_2O_5$  can transfer to the surface of strongly acidic materials (TiO<sub>2</sub> sulfate and H-ZSM-5) and that this oxygen contributes to the increase in the rate of NH<sub>2</sub> and nitrate formation. The oxygen transfer in the hybrid system may be explained by hypotheses such as (i) transfer of oxygen by NO<sub>2</sub> formation over  $V_2O_5$ , (ii)  $\alpha$ -oxygen due to the decomposition of N<sub>2</sub>O over H-ZSM-5 catalyst and (iii) spillover of oxygen.

In this communication, we focus on the identification of the oxygen source in the hybrid catalytic system with  $V_2O_5$ and H-ZSM-5. Firstly, in order to verify the synergy, the SCR reaction was performed using hybrid catalysts consisting in  $V_2O_5$  and H-ZSM-5 arranged in the reactor in different ways, namely, disposed in separate beds with either  $V_2O_5$  or H-ZSM-5 in the top layer. Additionally, the various reaction techniques were employed over pure and hybrid materials.

#### 2. Experimental

H-ZSM-5 (PQ Co.) has a surface area of about  $400 \text{ m}^2/\text{g}$ and a SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> molar ratio of 30. used in this experiment is a commercial oxide (Aldrich Co.). The specific surface area of V<sub>2</sub>O<sub>5</sub> (Aldrich Co.) is 2.5 m<sup>2</sup>/g. Hybrid H-ZSM-5/V<sub>2</sub>O<sub>5</sub> catalysts are prepared through the superposition of H-ZSM-5 and V<sub>2</sub>O<sub>5</sub> with an equal weight (0.075 g).

Temperature programmed reaction (TPR) and steady state reaction (SSR) were carried out in a continuous flow fixed bed reactor operating at atmospheric pressure. The catalyst weight was 0.075 g in the case of a pure sample. The total flow rate was 100 ml/min and the feed composition (volume) was: nitric oxide 0.1%; ammonia 0.105%; 2.5% oxygen in helium. The reactor was vertical and made of quartz. The ramping rate of temperature in TPR was  $10 \,^{\circ}$ C/min. The inlet and outlet gas compositions were measured using a QMC 311 Balzers quadrupole mass spectrometer coupled to the reactor.

NO oxidation was also carried out in a continuous flow fixed bed reactor operating at atmospheric pressure. The total flow rate was 100 ml/min and the feed composition was: nitric oxide 0.1%; oxygen 2.5%. The inlet and outlet  $NO_2$ compositions were measured using a detector with a chemical sensor (TX2000, Oldham).

An NH<sub>3</sub>-TPD (temperature programmed desorption) spectrum was obtained by monitoring the desorbed species, after ammonia adsorption (0.5 vol.% in helium) on the catalyst at room temperature, under 50 ml/min of diluted nitric oxide flow (0.5 vol.% in helium) while increasing the temperature at a constant rate (10 °C/min). Outlet gas compositions of NO and N<sub>2</sub> were measured using a Balzers QMC 311 quadrupole mass spectrometer coupled to the reactor.

## 3. Results and discussion

Using the hybrid catalysts prepared by superposition of the two solids, SCR reaction was carried out and the result are compared with those obtained with pure  $V_2O_5$  and H-ZSM-5, as shown in Fig. 1. Pure  $V_2O_5$  shows a considerable activity at temperatures lower than 350 °C. But the NO conversion decreased due to the ammonia oxidation after 350 °C. It is reported that over pure  $V_2O_5$ , the decrease in NO conversion at high temperature is attributed to the direct oxidation of ammonia to NO since the reduced vanadium surface is fully reoxidized. On pure H-ZSM-5, the SCR activity appeared at 400 °C, while ammonia oxidation was negligible.

When H-ZSM-5 was placed in the first layer, the feature of NO consumption in the SCR reaction was almost



Fig. 1. SCR activity of  $V_2O_5$  ( $\blacksquare$ ), H-ZSM-5 ( $\bullet$ ), H-ZSM-5 (F)- $V_2O_5$  (S) ( $\diamond$ ), and  $V_2O_5$  (F)- H-ZSM-5 (S) ( $\blacklozenge$ ). Theoretical value ( $\blacktriangle$ ).

the same as the sum of activities observed on pure  $V_2O_5$ and H-ZSM-5. However, when  $V_2O_5$  was placed in the first layer, the NO conversion at all temperature ranges was higher than the sum of activities of pure  $V_2O_5$  and pure H-ZSM-5.

In the SCR mechanism over H-ZSM-5 [18–21], it is known that the NO to NO<sub>2</sub> oxidation is the rate-determining step. Considering this suggestion, it could be imagined that the role of V<sub>2</sub>O<sub>5</sub> can be attributed to the increase in the oxidation rate of NO<sub>2</sub>. It is also conceivable that two different pathways exist by which V<sub>2</sub>O<sub>5</sub> can increase the oxidation rate of NO to NO<sub>2</sub>: (1) direct oxidation of NO by V<sub>2</sub>O<sub>5</sub> (V<sub>2</sub>O<sub>5</sub> + NO  $\rightarrow$  V<sub>2</sub>O<sub>4</sub> + NO<sub>2</sub>) and (2) indirect oxidation via oxygen transfer (V<sub>2</sub>O<sub>5</sub>  $\rightarrow$  V<sub>2</sub>O<sub>4</sub> + O<sup>\*</sup>; O<sup>\*</sup> migrates to H-ZSM-5 so as to oxidise NO).

## 3.1. The direct formation of $NO_2$ over $V_2O_5$

Misono proposed a bifunctional mechanism in SCR by propylene over a physical mixture of Mn<sub>2</sub>O<sub>3</sub> and Ce-ZSM-5 [22]. In this system, the role of each component was explained as follows: Mn2O3 oxidizes NO to NO2 and Ce-ZSM-5 is responsible for the reaction between NO2 and propylene and the decomposition of intermediates to N2. Considering this synergetic scheme, the direct formation of NO<sub>2</sub> over V<sub>2</sub>O<sub>5</sub> can be postulated over the hybrid system of V2O5 and H-ZSM-5 in the SCR reaction. To identify the contribution of  $V_2O_5$  on NO2 formation, the direct NO oxidation was carried out over pure H-ZSM-5 and pure  $V_2O_5$  in the presence of oxygen. The NO<sub>2</sub> concentrations observed are shown in Fig. 2. H-ZSM-5 catalysts showed a higher NO2 concentration at room temperature, while no NO2 formation was detected on V2O5. When temperature increased up to 200 °C, the NO<sub>2</sub> formation over H-ZSM-5 rapidly decreased. But when temperature further increased, NO<sub>2</sub> formation gradually increased. In the case of V<sub>2</sub>O<sub>5</sub>, only 8ppm NO<sub>2</sub> was detected at 450 °C. This result suggests that the direct oxidation of NO to NO2 over V2O5 is not sufficient to explain the synergetic effect observed in a layered hybrid system.



Fig. 2. NO<sub>2</sub> concentration (ppm) formed according to the temperature over H-ZSM-5 ( $\blacksquare$ ), and V<sub>2</sub>O<sub>5</sub> ( $\bullet$ ), under a flow of NO (1000 ppm) and O<sub>2</sub> (2.5%) in He.



Fig. 3. TPR result obtained over pure  $V_2O_5$  under a flow over NO (1000 ppm), NH<sub>3</sub> (1000 ppm) and O<sub>2</sub> (2.5%) in He.

#### 3.2. The indirect formation of $NO_2$ via oxygen transfer

TPR experiment were performed in order to elucidate the possibility that  $V_2O_5$  acts more like an O reservoir, increasing the oxidation rate of NO to NO<sub>2</sub> considered as the rate determining step of the SCR reaction over H-ZSM-5.

The distribution of the products over  $V_2O_5$  in the  $NO + NH_3 + O_2$  reaction was investigated firstly. The change of composition according to temperature increase is shown in Fig. 3. The behavior of NO is similar to that observed in the steady state SCR reaction, shown in Fig. 1. It was shown that the increase in the NO concentration above 350 °C is accompanied by either the increase in the N<sub>2</sub>O concentration or by the decrease in N<sub>2</sub> concentration. The N<sub>2</sub> concentration curve in TPR above 350 °C is almost symmetrical with that below 350 °C, whereas the increasing slope of NO above 350 °C was steeper than the decreasing slope of NO below 300 °C. The different behavior in the NO concentration change below and above 350 °C suggested the contribution of ammonia oxidation reaction. In other words, 1 mole of NO and 1 mole of NH<sub>3</sub> react to be converted to 1 mole of N<sub>2</sub> below 350 °C, whereas above 350 °C, NH<sub>3</sub> gradually reacts with O<sub>2</sub> to form NO preferentially. Thus, the total NO concentration above 350°C is attributed to the sum of the NO produced due to ammonia oxidation and the unreacted NO.

The N<sub>2</sub>O formation began between 300 and 350 °C and is maximized at 450 °C. Above 450 °C, the N<sub>2</sub>O concentration decreased, whereas NO formation still increased. In this experiment, NO<sub>2</sub> is not detected. Thus, it was shown that the ammonia oxidation began around 300–350 °C and N<sub>2</sub>O is the only by-product, not included in reactant.

To find the contribution of N<sub>2</sub>O on the promoted SCR activity over the layered hybrid sample, a TPR experiment was also performed over the layered hybrid catalyst with V<sub>2</sub>O<sub>5</sub> and H-ZSM-5 as the first and the second layers, respectively. The results are depicted in Fig. 4. Below 350 °C, the distribution of product is similar to that observed for pure V<sub>2</sub>O<sub>5</sub> as shown in Fig. 2. Above 350 °C, the high consumption rate of NO is maintained up to 480 °C. Especially, the consumption rate of NO between 350 and 480 °C led to the increase



Fig. 4. TPR result obtained over layered hybrid sample composed of  $V_2O_5$  (F)- H-ZSM-5 (S) under a flow of NO (1000 ppm), NH<sub>3</sub> (1000 ppm) and  $O_2$  (2.5%).

in the N<sub>2</sub> concentration as well as the consumption of N<sub>2</sub>O. From this result, it is suggested that N<sub>2</sub>O may participate in the reaction of NO with ammonia. Kapteijn et al. [23]. extensively studied the behaviour of the N<sub>2</sub>O over solid catalysts, including the transition metal exchanged zeolites. They reported that the nitrous oxide began to decompose into N<sub>2</sub> and activated oxygen at 350 °C, according to Eq. (1):

$$N_2 O \rightleftharpoons N_2 + O^* \tag{1}$$

In the above equation, the activated oxygen  $(O^*)$  is supposed to be a strong oxidant. Thus, the contribution of N<sub>2</sub>O on SCR reaction over H-ZSM-5 can be depicted as follows:

$$N_2 + O^* + NO \rightarrow NO_2 + N_2 \tag{2}$$

$$NO_2 + NH_3 \rightarrow N_2 + H_2O + OH \tag{3}$$

To verify the reaction of N<sub>2</sub>O over H-ZSM-5, the N<sub>2</sub>O decomposition was performed. Fig. 5 shows the dependency of N<sub>2</sub>O concentration on temperature as well as the product distributions due to the decomposition of N<sub>2</sub>O. Up to 300 °C, there was no change in the N<sub>2</sub>O concentration. The evolution of the water adsorbed on the surface was only detected below 300 °C. The first consumption of N<sub>2</sub>O occurred between 350 and 470 °C, with the appearance of N<sub>2</sub> and H<sub>2</sub>O, although the N<sub>2</sub>O concentration gradually recovered from 450 °C to reach 500 ppm. The second consumption of N<sub>2</sub>O appeared at 470 °C and continued up to 600 °C. In the second consumption of N<sub>2</sub>O, O<sub>2</sub> instead of H<sub>2</sub>O was detected with N<sub>2</sub>. This result clearly indicates that pure H-ZSM-5 itself can show an activity for the N<sub>2</sub>O decomposition.

In order to explain the pathways of  $N_2O$  decomposition based on the conventional mechanism, the in-depth zeolite structure should be considered. It is known that the dehydration of the H form zeolite at high temperature creates a coordinatively unsaturated site and excess negative charge in the structure, as shown in Scheme 1 [24]. As mentioned above, the active site for the N<sub>2</sub>O decomposition should be followed by dehydration. Actually, as shown in Fig. 5, H<sub>2</sub>O appeared in the first consumption of N<sub>2</sub>O. Thus, in the first



Fig. 5. N<sub>2</sub>O decomposition over H-ZSM-5.

step, the behavior of N<sub>2</sub>O can also be interpreted as shown in Scheme 1: N<sub>2</sub>O adsorbed on coordinatively unsaturated Al and Si, after dehydration, and then scission of N<sub>2</sub>O takes place by the neighbor negative charge. The dehydrated site of the surface is replenished by the surface oxygen (O\*), which is produced by the decomposition of N<sub>2</sub>O. Up to 470 °C, since the surface oxygen combined with the structure may be stable, the conversion of N<sub>2</sub>O was decreased. This result suggests the following: the N<sub>2</sub>O conversion below 470 °C may not be detected in steady state reaction, since the replacement of surface oxygen into the dehydrated site re-stabilizes the surface structure and makes the surface inactive for N<sub>2</sub>O decomposition. Above 470 °C, however, the surface oxygen captured in the structure is emitted as O<sub>2</sub>, as shown in Fig. 5.



Scheme 1. Pathways of N2O decomposition over pure H-ZSM-5.



Fig. 6.  $NH_3$ -TPD under NO flow (5000 ppm/He) observed over:  $V_2O_5$  (a), H-ZSM-5 (b), and layered hybrid sample composed of  $V_2O_5$  (F) H-ZSM-5 (S) (c).

This reaction path can be described as follows:

 $O^*-M + N_2O \rightarrow O_2 + N_2 + []-M$  (4)

 $2O^* - M \rightarrow O_2 + 2[] - M$  (5)

 $N_2O + []-M \rightarrow N_2 + O^*-M$  (6)

In order to investigate another hypothesis concerning the spillover oxygen from the V<sub>2</sub>O<sub>5</sub> layer, NH<sub>3</sub>-TPD by NO in the absence of  $O_2$  was performed in pure  $V_2O_5$ , pure H-ZSM-5 and a layered hybrid sample with  $V_2O_5$  as the first layer, after the preadsorption of ammonia at room temperature. Fig. 6 shows the variation of NO concentrations during a temperature increase by 10 °C/min. The variation of N<sub>2</sub> formation completely corresponded to that of the NO consumption, as was shown in [17]. In the case of  $V_2O_5$ , the NO consumption was only detected up to 300 °C. Above 300 °C, no change is observed. This result shows that the amount of ammonia adsorbed on V<sub>2</sub>O<sub>5</sub> is negligible above 300 °C. for H-ZSM-5, although a small consumption of NO was detected at 250 °C, it can be considered negligible. Considering that H-ZSM-5 showed the highest amount of the adsorbed ammonia at high temperature, it is confirmed that the reaction of NO with ammonia over H-ZSM-5 is activated by the presence of an oxygen intermediate. Over the hybrid samples, the NO consumption showed quite a different behavior from the expectations based on the results of two pure samples. Especially, around 350 °C, a high consumption of NO was observed with a high formation of N2. Based on SCR mechanism over H-ZSM-5, the concentration of an oxygen intermediate is surely increased due to the superposition of V<sub>2</sub>O<sub>5</sub> over H-ZSM-5. This result suggests that the hypothesis of spillover oxygen cannot be totally excluded to explain increased SCR activity on the hybrid catalyst composed of  $V_2O_5$  and H-ZSM-5.

# 4. Conclusion

Hybrid  $V_2O_5$  and H-ZSM-5 catalysts used in the selective catalytic reduction reaction of NO with NH<sub>3</sub> have been stud-

ied. Vanadium oxide disposed in the first layer upon the zeolite in a reactor shows an improved activity, as compared with the sum of the individual activities of the pure phases. TPR and NH<sub>3</sub>-TPD show that the improved reactivity is closely related to the enhanced formation of oxidation intermediates by V<sub>2</sub>O<sub>5</sub>: (i) N<sub>2</sub>O, which is the source of  $\alpha$ -oxygen, and (ii) spillover oxygen. As a result, it can be suggested that the oxidation rate of NO into NO<sub>2</sub> increased by the transferred oxygen from V<sub>2</sub>O<sub>5</sub>, contributing to the increase in the SCR reaction rate over the hybrid catalysts.

### Acknowledgements

This work was supported by ECSC project (7220-ED/093). We also acknowledge the financial support of FNRS (Fonds National de la Recherche Scientifique, Belgium).

## References

- V.I. Parvulescu, P. Grange, B. Delmon, Catal. Today 46 (1998) 233.
- [2] P. Forzatti, L. Lietti, Heterogen. Chem. Rev. 3 (1996) 33.
- [3] M. Oliva, M.U. Alzueta, A. Millera, R. Bilbao, Chem. Eng. Sci. 55 (2000) 5321.
- [4] G. Busca, L. Lietti, G. Ramis, F. Berti, Appl. Catal. B 18 (1998) 15.
- [5] H. Bosch, F.T. Janssen, Catal. Today 2 (1988) 369.
- [6] G.C. Bond, S.F. Tahir, Appl. Catal. 71 (1991) 1.
- [7] G. Ramis, G. Busca, F. Bregani, P. Forzatti, Appl. Catal. 64 (1990) 259.
- [8] N.Y. Topsøe, H. Topsøe, J.H. Dumesic, J. Catal. 151 (1995) 241.
- [9] M. Takagi, T. Kawai, M. Soma, T. Onishi, K. Tamaru, J. Catal. 50 (1977) 441.
- [10] M. Inomata, A. Miyamoto, Y. Murakami, J. Catal. 62 (1980) 140.
- [11] F. Janssen, F. Van den Kerkhof, H. Bosch, J.J. Ross, Phys. Chem. 91 (1987) 5931.
- [12] J.A. Odriozola, H. Heinemann, G.A. Somorjai, J.F. Garcia de la Banda, P. Pereira, J. Catal. 119 (1989) 71.
- [13] A. Miyamoto, Y. Yamazaki, M. Inomata, Y. Murakami, J. Phys. Chem. 85 (1981) 2366.
- [14] A. Miyamoto, Y. Yamazaki, T. Hattori, M. Inomata, Y. Murakami, J. Catal. 74 (1982) 144.
- [15] K. Otto, M. Shelef, J.T. Kummer, J. Phys. Chem. 74 (1970) 2690.
- [16] G.L. Bauerle, S.C. Wu, K. Nobe, Ind. Eng. Chem. Prod. Res. Dev. 14 (1975) 123.
- [17] S.M. Jung, P. Grange, Appl. Catal. B: Environ. 36 (2002) 207.
- [18] L.A.H. Andersson, J.G.M. Brandin, C.U.I. Odenbrand, Catal. Today 4 (1989) 173.
- [19] J.G.M. Brandin, L.A.H. Andersson, C.U.I. Odenbrand, Catal. Today 4 (1989) 187.
- [20] J. Eng, C.H. Bartholomew, J. Catal. 171 (1997) 14.
- [21] J. Eng, C.H. Bartholomew, J. Catal. 171 (1997) 27.
- [22] M. Misono, CATECH 2 (1998) 183.
- [23] F. Kapteijn, J.R. Mirasol, J.A. Moulijn, Appl. Catal. B: Environ. 9 (1996) 25.
- [24] K. Tanabe, M. Misono, Y. Ono, H. Hattori, Stud. Surf. Sci. Catal. 51 (1989) 142.